Upper ocean mixing controls the seasonality of planktonic foraminifer fluxes and associated strength of the carbonate pump in the oligotrophic North Atlantic

نویسندگان

  • K. H. Salmon
  • P. Anand
  • P. F. Sexton
چکیده

Oligotrophic regions represent up to 75% of Earth’s open-ocean environments. They are thus areas of major importance in understanding the plankton community dynamics and biogeochemical fluxes. Here we present fluxes of total planktonic foraminifera and 11 planktonic foraminifer species measured at the Oceanic Flux Program (OFP) time series site in the oligotrophic Sargasso Sea, subtropical western North Atlantic Ocean. Foraminifera flux was measured at 1500m water depth, over two ∼ 2.5-year intervals: 1998–2000 and 2007–2010. We find that foraminifera flux was closely correlated with total mass flux, carbonate and organic carbon fluxes. We show that the planktonic foraminifera flux increases approximately 5-fold during the winter–spring, contributing up to ∼ 40% of the total carbonate flux. This was primarily driven by increased fluxes of deeper-dwelling globorotaliid species, which contributed up to 90% of the foraminiferal-derived carbonate during late winter–early spring. Interannual variability in total foraminifera flux, and in particular fluxes of the deepdwelling species (Globorotalia truncatulinoides, Globorotalia hirsuta and Globorotalia inflata), was related to differences in seasonal mixed layer dynamics affecting the strength of the spring phytoplankton bloom and export flux, and by the passage of mesoscale eddies. As these heavily calcified, dense carbonate tests of deeper-dwelling species (3 times denser than surface dwellers) have greater sinking rates, this implies a high seasonality of the biological carbonate pump in oligotrophic oceanic regions. Our data suggest that climate cycles, such as the North Atlantic Oscillation, which modulates nutrient supply into the euphotic zone and the strength of the spring bloom, may also in turn modulate the production and flux of these heavily calcified deep-dwelling foraminifera by increasing their food supply, thereby intensifying the biological carbonate pump.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions of Atlantic Ocean to June-August Rainfall over Uganda and Western Kenya

This study investigates the contributions of Atlantic Ocean to June-August rainfall over Uganda and western Kenya (KU). The study has utilized the datasets including precipitation from the Global Precipitation Climatology Centre, North Atlantic Oscillation Index (NAOI), South Atlantic Ocean Dipole Index (SAODI), ERA-interim reanalysis, and the Atlantic Ocean Sea Surface Temperature (SST). Singu...

متن کامل

Influence of atmospheric circulation patterns on dust transport during Harmattan Period in West Africa

This study has used TOMS AI as well as the reanalysis dataset of thirty-four years (1979-2012) to investigate the influence of atmospheric circulation on dust transport during the Harmattan period in West Africa, using Aerosol Index (AI) data, obtained from various satellite sensors. Changes in Inter-Tropical Discontinuity (ITD), Sea Surface Temperature (SST) over the Gulf of Guinea, and North ...

متن کامل

Forcing of the deep ocean circulation in simulations of the Last Glacial Maximum

[1] From the interpretation of different proxy data it is widely believed that the North Atlantic thermohaline circulation during the maximum of the last ice age !21,000 years ago was considerably weaker than today. Recent equilibrium simulations with a coupled ocean-atmosphere-sea ice model successfully simulated a reduction in North Atlantic Deep Water (NADW) formation consistent with reconst...

متن کامل

The role of nutricline depth in regulating the ocean carbon cycle.

Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes it...

متن کامل

High export via small particles before the onset of the North Atlantic spring bloom

Sinking organic matter in the North Atlantic Ocean transfers 1–3 Gt carbon yr from the surface ocean to the interior. The majority of this exported material is thought to be in form of large, rapidly sinking particles that aggregate during or after the spring phytoplankton bloom. However, recent work has suggested that intermittent water column stratification resulting in the termination of dee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015